High Sensitivity Wavefront Sensing with a Nonlinear Curvature Wavefront Sensor
نویسندگان
چکیده
منابع مشابه
Differential wavefront curvature sensor
In this paper, a wavefront curvature sensor is presented. This sensor is based on the measurements of the differentials of wavefront slopes, where the wavefront slope measurements can be achieved by a Shack-Hartmann sensor. A ShackHartmann sensor with three output collimated beams will be introduced with a lenslet array installed in each beam. By shifting two of the Shack-Hartmann grids in the ...
متن کاملComparison of Phase Diversity and Curvature Wavefront Sensing
We compare phase diversity and curvature wavefront sensing. Besides having completely different reconstruction algorithms, the two methods measure data in different domains: phase diversity very near to the focal plane, and curvature wavefront sensing far from the focal plane in quasi-pupil planes, which enable real-time computation of the wavefront using analog techniques. By using information...
متن کاملUltra-high resolution coded wavefront sensor.
Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically,...
متن کاملNear-infrared wavefront sensing
We discuss the advantages of wavefront sensing at near-infrared (IR) wavelengths with low-noise detector technologies that have recently become available. In this paper, we consider low order sensing with laser guide star (LGS) adaptive optics (AO) and high order sensing with natural guide star (NGS) AO. We then turn to the application of near-IR sensing with the W. M. Keck Observatory (WMKO) A...
متن کاملCompressed wavefront sensing.
We report on an algorithm for fast wavefront sensing that incorporates sparse representation for the first time in practice. The partial derivatives of optical wavefronts were sampled sparsely with a Shack-Hartman wavefront sensor (SHWFS) by randomly subsampling the original SHWFS data to as little as 5%. Reconstruction was performed by a sparse representation algorithm that utilized the Zernik...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Astronomical Society of the Pacific
سال: 2010
ISSN: 0004-6280,1538-3873
DOI: 10.1086/649646